
Fastest-lap
Release v0.5

Juan Manzanero

Aug 16, 2023

GETTING STARTED

1 Overview 3
1.1 Installation . 3
1.2 Quickstart . 5
1.3 Overview . 9
1.4 Variable types . 11
1.5 Functions . 11
1.6 Models . 16
1.7 Modules . 16
1.8 Defining and exploring variables . 17
1.9 How racing drivers save fuel efficiently: the lift-and-coast technique 17
1.10 Car and tire dynamics at the limits of handling (Part I) . 18
1.11 Car and tire dynamics at the limits of handling (Part II) . 19
1.12 Can 2022 F1 cars tame 130R with DRS open? — Suzuka tech bits 19
1.13 Formula 1 cars or sailing ships?– United States GP Tech bits . 20

i

ii

Fastest-lap, Release v0.5

Fastest-lap is a vehicle dynamics simulator. It can be used to understand vehicle dynamics, to learn about driving
techniques, to design car prototypes, or just for fun!

GETTING STARTED 1

Fastest-lap, Release v0.5

2 GETTING STARTED

CHAPTER

ONE

OVERVIEW

Fastest-lap an open source (MIT) written in C++, and it is usable from any scripting language such as Python and
MATLAB. It is cross-platform, and it has been extensively tested on Windows 10, Linux (Ubuntu) and Mac.

Fastest-lap is characterized for its simplity and ease of use. With less than 10 lines of code you will be running and
analyzing your first laptime simulation.

1.1 Installation

Fastest-lap is ready to use once you have the dynamic library libfastestlapc-VERSION, plus other libraries such as
Ipopt and Mumps. The following steps describe how to get such library.

1.1.1 Windows 10 (Precompiled binaries)

Prerequisites: none :)

Download the latest release of Fastest-lap, and unzip its contents to your desired folder. If you don’t want bad things to
happen, keep all the files into their original directory relative to the root!

• bin contains the Fastest-lap C++ dynamic library: libfastestlapc-VERSION.dll plus other dynamic li-
braries fastest-lap depends on.

• include contains the Fastest-lap C header fastestlapc.h and the python module fastest_lap.py

• database includes track and vehicle models inputs

• examples contains python notebook examples

3

https://github.com/juanmanzanero/fastest-lap/blob/main/LICENSE
https://github.com/juanmanzanero/fastest-lap/releases
https://github.com/juanmanzanero/fastest-lap/tree/main/database
https://github.com/juanmanzanero/fastest-lap/tree/main/examples

Fastest-lap, Release v0.5

1.1.2 Linux and Mac

Prerequisites:

• C/C++ and Fortran compilers

• CMake

• (mac) Command line tools

Fastest-lap has been successfully compiled with:

Mac

• Apple clang version 13.0.0

• GNU Fortran (Homebrew GCC 11.2.0_3) 11.2.0

Linux

• g++ (GCC) 11.2.0

• GNU Fortran (GCC) 11.2.0

The steps to build this project using CMake are the usual:

1) Set a variable FASTESTLAP to the top level directory

$ export FASTESTLAP=/path/to/fastest-lap

2) Create a build folder.

4 Chapter 1. Overview

https://cmake.org
https://www.freecodecamp.org/news/install-xcode-command-line-tools/

Fastest-lap, Release v0.5

$ mkdir ${FASTESTLAP}/build

3) From the build folder, run cmake

$ cd ${FASTESTLAP}/build && cmake ..

The following options can be set to customise the compilation:

• CMAKE_BUILD_TYPE: Debug/Release (defaults to RELEASE)

• CMAKE_C_COMPILER: /path/to/cc

• CMAKE_CXX_COMPILER: /path/to/cxx

• CMAKE_Fortran_COMPILER: /path/to/fc

At this stage, CMake will download and install all the thirdparty dependencies. This can take up to 30 minutes

4) Compile

$ make

If make was successful, the dynamic library libfastestlapc.dylib (Mac) or libfastestlap.so (Linux) should
be found in ${FASTESTLAP}/build/lib

5) (Optional but recommended) Test

$ ctest --verbose

1.1.3 Troubleshooting

If you encounter any issue while repeating the steps, first take a look in the Issues section of the repository. Probably
someone has been there before :). If still you cannot fix the issue, feel free to open a new issue.

1.2 Quickstart

Tutorial prerequisites

• A suitable python shell (e.g. Anaconda)

• Knowledge of XML (this video can serve as a nice introduction)

Fastest-lap can be very easily invoked from scripting languages such as Python and MATLAB. Let’s do a super fast
and simple system test: let’s compute a lap around Circuit de Catalunya using Python.

This example is based on the python notebook 1-simple-lap that can be found in the repository.

The entry point to fastest-lap, is the file fastest_lap.py. It is located under examples/python for Mac and Linux,
and under include for Windows. This file already knows how to find the C++ dynamic library, so you do not need to
worry about it.

We start by including the fastest_lap module. In this tutorial, every string called as "/path/to/whatever" is a
placeholder for you to introduce the real path in your system to the indicated file.

1.2. Quickstart 5

https://github.com/juanmanzanero/fastest-lap/issues?q=is%3Aissue
https://www.youtube.com/watch?v=1JblVElt5K0
https://github.com/juanmanzanero/fastest-lap/tree/main/examples/python/f1/optimal-laptime/1-simple-lap

Fastest-lap, Release v0.5

import sys,os,inspect
sys.path.append("/path/to/folder/where/fastest_lap.py/is/found/")
import fastest_lap

This command imports the Fastest-lap python API functions, and also loads the C++ library. The C++ library is a
collection of functions responsible of the computations, plus its internal memory where cars, circuits, and results are
stored. From this point, Fastest-lap is ready.

We can create a car model from an XML data file by calling create_vehicle_from_xml()

vehicle_name = "car"
fastest_lap.create_vehicle_from_xml(vehicle_name, "/path/to/database/vehicles/f1/
→˓mercedes-2020-catalunya.xml");

This creates a variable of type 3dof F1 car in the Fastest-lap C++ internal memory by the name of "car". If you try to
create another variable with the same name, the application will throw an error.

Next, we can load a circuit from an XML file by calling create_track_from_xml(). This XML file contains a mesh
of the track centerline, and precomputed values for the heading angle, curvature, and distance to the track limits.

track_name = "catalunya"
fastest_lap.create_track_from_xml(track_name, "/path/to/database/tracks/catalunya/
→˓catalunya_adapted.xml");

This creates a variable of type track in the internal memory with the name "catalunya". We can retrieve addi-
tional data from the track that is needed for future calculations, such as the arclength (traveled distance along the track
centerline) mesh. We can do so by calling track_download_data()

s = fastest_lap.track_download_data(track_name,"arclength");

Car and circuit are ready. Let’s compute the optimal laptime. We start by setting the options configure the computation.
Options are passed through a string written in XML format. For now, we will just set two options:

• First, the simulation produces timeseries for the dynamic variables (think of the velocity, positions, forces, etc).
These are stored as variables in the Fastest-lap internal memory that can be later retrieved. We just must specify a
virtual folder where these variables will be stored, in this case we use "run/". The velocity will be later accessed
as run/chassis.velocity.x.

• Second, while the simulator runs we can have some screen output to see the progress. This output is redirected
from Ipopt, and it has up to 12 print levels (print level 0 produces no output). We chose print_level = 5, as
it gives enough representative data of how the solution is converging.

options = "<options>"
options += " <output_variables>"
options += " <prefix>run/</prefix>"
options += " </output_variables>"
options += " <print_level> 5 </print_level>"
options += "</options>"

Check in this link the full list of options available.

To compute the laptime, we call optimal_laptime(). We pass to this funciton the vehicle, the track, the arclength
mesh, and the options. Its output is the names of all the generated variables in the internal memory. We can redirect
this data to fastest_lap.download_variables(), which downloads the variables to the python workspace. This
variables are stored in a dictionary run and they can be accessed by name (e.g. x = run["chassis.position.x"]).

6 Chapter 1. Overview

https://web.archive.org/web/20200320055720id_/https://ora.ox.ac.uk/objects/uuid:ce1a7106-0a2c-41af-8449-41541220809f/download_file?safe_filename=Perantoni%2Band%2BLimebeer%252C%2BOptimal%2Bcontrol%2Bfor%2Ba%2BFormula%2BOne%2Bcar%2Bwith%2Bvariable%2Bparameters.pdf&file_format=application%2Fpdf&type_of_work=Journal+article
about:blank

Fastest-lap, Release v0.5

run = fastest_lap.download_variables(*fastest_lap.optimal_laptime(vehicle_name, track_
→˓name, s, options));

This is Ipopt version 3.14.8, running with linear solver MUMPS 5.5.0.

Number of nonzeros in equality constraint Jacobian...: 154734
Number of nonzeros in inequality constraint Jacobian.: 18122
Number of nonzeros in Lagrangian Hessian.............: 85034

Total number of variables............................: 10455
variables with only lower bounds: 0

variables with lower and upper bounds: 10455
variables with only upper bounds: 0

Total number of equality constraints.................: 9061
Total number of inequality constraints...............: 4182

inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 4182

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 3.3056907e+02 2.69e-01 4.57e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 3.2889671e+02 1.14e+00 8.46e-01 -1.0 1.18e+00 - 7.05e-01 1.00e+00f 1
2 3.1958071e+02 3.11e-01 1.13e-01 -1.0 4.22e-01 - 8.49e-01 1.00e+00f 1
3 1.6821222e+02 2.80e+00 7.32e-01 -1.0 1.94e+01 - 6.60e-01 1.00e+00f 1
4 1.2837223e+02 1.21e+00 6.27e-01 -1.0 2.09e+01 - 6.77e-01 1.00e+00f 1
5 9.9468468e+01 8.94e-01 7.43e-01 -1.0 2.36e+01 - 6.96e-01 1.00e+00f 1
6 9.2840692e+01 5.66e-01 3.26e-01 -1.7 9.36e+00 - 8.21e-01 1.00e+00h 1
7 8.5271100e+01 4.41e-01 1.41e-01 -1.7 1.11e+01 - 1.00e+00 1.00e+00f 1
8 8.5277352e+01 6.13e-02 5.65e-01 -1.7 5.96e-01 0.0 1.00e+00 1.00e+00h 1
9 8.5278537e+01 1.74e-03 2.30e-01 -1.7 8.39e-02 0.4 1.00e+00 1.00e+00h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 8.5276892e+01 1.53e-04 1.03e-02 -1.7 1.16e-02 -0.1 1.00e+00 1.00e+00h 1
11 8.0956232e+01 3.37e-01 1.06e-01 -3.8 8.10e+00 - 6.33e-01 6.48e-01f 1
12 7.8792474e+01 2.86e-01 1.13e-01 -3.8 1.02e+01 - 5.74e-01 3.43e-01h 1
13 7.6337073e+01 2.45e-01 1.30e-01 -3.8 1.14e+01 - 2.85e-01 4.48e-01h 1
14 7.6345553e+01 1.69e-01 1.58e+00 -3.8 3.10e-01 -0.5 2.83e-02 1.00e+00h 1
15 7.6346316e+01 5.11e-02 9.21e-01 -3.8 1.20e-01 -0.1 8.55e-01 1.00e+00h 1
16 7.6329460e+01 9.29e-03 2.23e-01 -3.8 5.64e-02 -0.6 1.00e+00 1.00e+00h 1
17 7.6287363e+01 8.06e-03 4.78e-02 -3.8 1.29e-01 -1.1 1.00e+00 1.00e+00h 1
18 7.6185877e+01 1.64e-02 3.11e-02 -3.8 2.66e-01 -1.5 1.00e+00 1.00e+00h 1
19 7.6127662e+01 8.19e-02 4.57e-02 -3.8 9.62e-01 -2.0 3.67e-01 2.42e-01h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
20 7.6118606e+01 3.31e-02 1.29e-01 -3.8 2.20e-01 -0.7 1.00e+00 1.00e+00h 1
21 7.6085306e+01 1.53e-03 5.87e-03 -3.8 8.50e-02 -1.2 1.00e+00 1.00e+00h 1
22 7.5992174e+01 1.20e-02 6.35e-03 -3.8 2.57e-01 -1.6 1.00e+00 1.00e+00h 1
23 7.5866448e+01 3.66e-02 2.11e-01 -3.8 5.46e-01 -2.1 2.75e-01 5.12e-01h 1
24 7.5782968e+01 3.18e-02 3.21e-01 -3.8 1.38e+00 -2.6 1.00e+00 1.34e-01h 1
25 7.5574503e+01 2.03e-02 2.85e-01 -3.8 3.08e-01 -2.2 3.78e-01 9.34e-01h 1
26 7.5372005e+01 1.57e-02 2.10e-01 -3.8 7.58e-01 -2.6 1.00e+00 3.63e-01h 1
27 7.5209407e+01 1.00e-02 2.79e-02 -3.8 2.86e-01 -2.2 1.00e+00 8.62e-01h 1
28 7.5140991e+01 2.26e-03 1.74e-03 -3.8 1.07e-01 -1.8 1.00e+00 1.00e+00h 1
...

(continues on next page)

1.2. Quickstart 7

Fastest-lap, Release v0.5

(continued from previous page)

...
110 7.3367142e+01 1.39e-04 3.83e-04 -8.6 7.39e-01 - 9.87e-01 9.57e-01h 1
111 7.3367124e+01 8.70e-06 9.28e-07 -8.6 2.18e-01 - 1.00e+00 1.00e+00h 1
112 7.3367124e+01 1.91e-07 6.65e-08 -8.6 3.83e-02 - 1.00e+00 1.00e+00h 1
113 7.3367124e+01 4.79e-09 1.72e-09 -8.6 1.76e-03 - 1.00e+00 1.00e+00h 1
114 7.3367123e+01 4.94e-09 1.06e-09 -11.0 4.98e-03 - 1.00e+00 1.00e+00h 1
115 7.3367123e+01 5.14e-12 3.13e-13 -11.0 2.68e-05 - 1.00e+00 1.00e+00h 1

Number of Iterations....: 115

(scaled) (unscaled)
Objective...............: 7.3367123134545238e+01 7.3367123134545238e+01
Dual infeasibility......: 3.1333330545970075e-13 3.1333330545970075e-13
Constraint violation....: 5.1400678418439538e-12 5.1400678418439538e-12
Variable bound violation: 9.3933291700487587e-11 9.3933291700487587e-11
Complementarity.........: 9.9178403300925627e-12 9.9178403300925627e-12
Overall NLP error.......: 9.9178403300925627e-12 9.9178403300925627e-12

Number of objective function evaluations = 121
Number of objective gradient evaluations = 116
Number of equality constraint evaluations = 121
Number of inequality constraint evaluations = 121
Number of equality constraint Jacobian evaluations = 116
Number of inequality constraint Jacobian evaluations = 116
Number of Lagrangian Hessian evaluations = 115
Total seconds in IPOPT = 82.715

EXIT: Optimal Solution Found.

After approximately 1 minute, the results should be ready. You can plot, analyze, and visualize all the data stored in
run. You can list all the available variables calling run.keys().

A quick way to plot the trajectory is calling plot_optimal_laptime

import numpy as np
fastest_lap.plot_optimal_laptime(s, run["chassis.position.x"], run["chassis.position.y"],
→˓ track_name);
plt.gca().invert_xaxis()

8 Chapter 1. Overview

Fastest-lap, Release v0.5

And that’s all folks, I hope you enjoy it!

1.3 Overview

The philosophy of this software is to find the perfect balance between performance and versatility. Code written in
C++ is super fast and efficient, and scripting languages such as MATLAB and Python are versatile and perfect for data
processing and visualization, plus are well known to everybody.

What we came up with, it’s a C++ world in the form of a dynamic library, that is controlled through Python/MATLAB.
This library (the .dll file for Windows, .dylib for Mac, and .so for Linux) is responsible for all the heavy compu-
tations such as gg diagrams, laptime optimizations, and circuit preprocessors.

A dynamic library is a collection of functions plus internal memory to store data (scalars, vectors, cars, circuits,. . .).
The functions are the entry port to the Fastest-lap library from Python/MATLAB. One can create/modify/delete vari-
ables in the internal memory, and run applications such as gg-diagrams, optimal laptimes, and circuit preprocessings.
After an application has been run, the results will be stored in the internal memory, which can be later downloaded to
Python/MATLAB.

Examples of the functions you can find are:

• Factories: to create variables in the internal memory (e.g. to create a car, a circuit, a scalar variable, a vector)

• Modifiers: to modify variables stored in the internal memory (e.g. to modify a setup parameter of a created car)

• Applications: to run simulations: circuit preprocessor, gg diagram, and optimal laptime

• Getters: to retrieve the results and data back to Python/MATLAB

• Destructors: to delete variables once they are not needed anymore

1.3. Overview 9

https://www.techopedia.com/definition/27133/dynamic-library

Fastest-lap, Release v0.5

The variables are internally stored by name (as in every programming language), and there can only one and only
variable with the same name. That is, if there’s a vehicle called "my_car", one cannot create another vehicle
called "my_car" or a vector called "my_car".

Also, one can use paths to group variables. For example, in the figure, there are the vector variables Simulation1/
chassis.position.x and Simulation2/chassis.position.x

With the use of this methodology, it is very easy to perform computations. For example, what the quickstart example
does is:

1. Create a car by the name of "car". This will add a variable of type "vehicle" into the internal memory with
the name "car"

2. Create a circuit by the name of "catalunya". This will add a variable of type "track" into the internal memory
with the name "catalunya"

3. Run optimal laptime. The output of this function is a collection of timehistories from the simulation. These
timehistories are new variables of type vector stored in the internal memory under the prefix run/, for example,
"run/chassis.position.x", "run/chassis.position.y", "run/chassis.velocity.x", . . .

4. Download results. The vector and scalar tables can be emptied afterwards by calling

fastest_lap.clear_tables_by_prefix("run/")

10 Chapter 1. Overview

Fastest-lap, Release v0.5

1.4 Variable types

This page provides a reference on the types of variables that are currently supported in Fastest-lap

Variable type Description Create Modify Get
Scalar Store one real num-

ber
create_scalar() download_scalar()

Vector Store multiple real
numbers

create_vector() download_vector()

Vehicle Store one vehicle cre-
ate_vehicle_from_xml()

vehi-
cle_set_parameter()

vehi-
cle_save_as_xml()

cre-
ate_vehicle_empty()

vehi-
cle_declare_new_constant_parameter()
vehi-
cle_change_track()

Track Store one circuit cre-
ate_track_from_xml()

track_get_data()

1.5 Functions

This the reference page for all the functions included in Fastest-lap API. Both the C and Python API versions are
provided.

1.5.1 Configuration

set_print_level

Adjusts the level of detail of the screen output. (Default: 2)

C API

void set_print_level(int print_level);

Python API

def set_print_level(print_level)

print_level ranges from 0 to 2: print_level=0 supresses all outputs, and print_level=2 is the fully
detailed output.

1.4. Variable types 11

Fastest-lap, Release v0.5

1.5.2 Factories

create_scalar

Creates a scalar variable in the internal memory and assigns it an initial value

C API

void create_scalar(const char* variable_name, double variable_name);

Python API

def create_scalar(variable_name, variable_value)

create_vector

Creates a vector in the internal memory and assigns it an initial value. In C you need to specify how many
elements it should contain, whereas in python it is automatically inferred.

C API

void create_vector(const char* variable_name, const int vector_size, double*␣
→˓values);

Python API

def create_vector(variable_name, variable_values)

create_vehicle_from_xml

Creates a vehicle from an XML database file.

C API

void create_vehicle_from_xml(const char* vehicle_name, const char* database_
→˓xml_file);

Python API

def create_vehicle_from_xml(vehicle_name, database_xml_file)

This database file is passed as the argument database_xml_file. Its path can be absolute or relative but
if you use relative paths remember to make sure the program is run from the proper folder!

After the creation, the vehicle is stored in the internal memory with the name provided in vehicle_name.

12 Chapter 1. Overview

Fastest-lap, Release v0.5

create_vehicle_empty

Creates an empty vehicle of a given type.

C API

void create_vehicle_empty(const char* vehicle_name, const char* vehicle_
→˓type);

Python API

def create_vehicle_empty(vehicle_name, vehicle_type)

All the car parameters (for example, the vehicle mass) will be defaulted to 0.0 and they must be later set
using vehicle_set_parameter().

The type of the car model is specified through vehicle_type.

Two types are currently supported: "f1-3dof" and kart-6dof.

create_track_from_xml

Creates a circuit from an XML file. This XML file contains the geometrical description of the track: the
centerline, heading angle, curvature, and track limits.

C API

void create_track_from_xml(const char* track_name, const char* track_xml_
→˓file);

Python API

def create_track_from_xml(track_name, track_xml_file);

Examples of track XML files can be found in the database folder

copy_variable

Creates a new instance of a given existing variable under a new name

C API

void copy_variable(const char* source_name, const char* destination_name);

Python API

def copy_variable(source_name, destination_name)

1.5. Functions 13

https://github.com/juanmanzanero/fastest-lap/tree/main/database/tracks

Fastest-lap, Release v0.5

move_variable

Renames an existing to a new name

C API

void move_variable(const char* old_name, const char* new_name);

Python API

def move_variable(old_name, new_name)

1.5.3 Destructors

delete_variable

Deletes a variable with name variable_name from the internal memory.

C API

void delete_variable(const char* variable_name);

Python API

def delete_variable(variable_name)

delete_variable accepts regular expressions. For example one can delete all the variables under the
prefix run/ by using delete_variable("run/*").

1.5.4 Modifiers

vehicle_set_parameter

Sets a parameter from the physical model of an existing vehicle.

C API

void vehicle_set_parameter(const char* vehicle_name, const char* parameter_
→˓name, const double parameter_value);

Python API

def vehicle_set_parameter(vehicle_name, parameter_name, parameter_value)

14 Chapter 1. Overview

Fastest-lap, Release v0.5

vehicle_name is the name of the vehicle to be modified, parameter_name is the path to the selected
parameter, and parameter_value its new given value.

For example, to set the mass of a vehicle to 795.0, one can use
vehicle_set_parameter(vehicle_name, "vehicle/chassis/mass", 795.0).

The full list of model parameters can be found here.

vehicle_declare_new_constant_parameter

Among all the physical parameters of a model, selects a parameter to perform its sensitivity analysis after
the computation of an optimal laptime.

C API

void vehicle_declare_new_constant_parameter(const char* vehicle_name, const␣
→˓char* parameter_name,

const char* parameter_alias,␣
→˓const double parameter_value);

Python API

def vehicle_declare_new_constant_parameter(vehicle_name, parameter_name,␣
→˓parameter_alias, parameter_value)

parameter_name is the physical parameter that will be studied (e.g. vehicle/chassis/mass). Param-
eter alias is the name by which the sensitivity analysis will be found in the internal memory (e.g. one can
simply call it mass), and parameter_value is a new value for the parameter.

vehicle_declare_new_variable_parameter

Among all the physical parameters of a model, selects a parameter to perform its sensitivity analysis after
the computation of an optimal laptime.

As opposed to constant parameters, variable parameters are allowed to vary along the circuit.

C API

void vehicle_declare_new_variable_parameter(const char* vehicle_name, const␣
→˓char* parameter_name,

const char* parameter_aliases,␣
→˓const int number_of_values,

const double* parameter_values,␣
→˓const int number_of_mesh_points,

const int* mesh_parameter_
→˓indexes, const double* mesh_points);

parameter_name is the physical parameter that will be studied (e.g. vehicle/chassis/
aerodynamics/cd). Parameter aliases are the names by which the sensitivity analysis will be found
in the internal memory, separated by a semicolon (e.g. "cd1;cd2"). number_of_values is the number
of different values that the parameter can take, and parameter_values the values.

1.5. Functions 15

Fastest-lap, Release v0.5

number_of_mesh_points is the number of spatial points in which value breakpoints are specified,
mesh_parameter_indexes selects which value will be used for each breakpoint, and mesh_points is
the mesh arclength breakpoints.

The value of the parameter in an arbitrary position is computed using a linear interpolation using these
breakpoints.

For example, this can be used to define a DRS. We can define two values of the drag coefficient cd_drs_on
and cd_drs_off. If we have a DRS zone from s=100 to s=700, then the arguments are

• parameter_name = "vehicle/chassis/aerodynamics/cd"

• parameter_aliases = "cd_drs_on;cd_drs_off"

• number_of_values = 2

• parameter_values = {cd_drs_on, cd_drs_off}

• number_of_mesh_points = 6

• mesh_parameter_indexes = {1, 1, 0, 0, 1, 1}

• mesh_points = {0.0, 100.0, 101.0, 700.0, 701.0, track_length}

1.5.5 Getters

1.6 Models

Fastest-lap implements two car physical models:

1.6.1 F1 3 degrees of freedom model

Work in progress. . .

1.6.2 Go-kart 6 degrees of freedom model

Work in progress. . .

1.7 Modules

1.7.1 Circuit preprocessor

Work in progress. . .

16 Chapter 1. Overview

Fastest-lap, Release v0.5

1.7.2 GG-diagram

Work in progress. . .

1.7.3 Optimal laptime

Work in progress. . .

1.8 Defining and exploring variables

Work in progress. . .

1.9 How racing drivers save fuel efficiently: the lift-and-coast tech-
nique

In most motorsport disciplines, fuel management across the race distance is of paramount importance given the strong
and restrictive regulations on the powertrains. A few years ago in Formula 1, when the hybrid V6s landed all immature,
drivers used to spend a big part of their race saving fuel. We all remember Fernando Alonso’s nightmarish team
communications back in the McLaren-Honda days when he was asked to slow down “I don’t want, I don’t want. So I
race and then I concentrate on the fuel”.

The question is: how can drivers adapt their driving to save fuel? Probably advanced readers know that the most
successful technique is called lift-and-coast. It’s so called as drivers lift the throttle earlier before a heavy braking
section, let the engine brake and aerodynamic drag take over for a few hundred meters, and then if needed mildly apply
the brakes to coast into the corner. (Other fuel saving methods include short-shifting, left out of the scope of this post.)

Let’s analyse in depth how this technique works. We show the throttle and brake used to save 10% fuel. The maximum
attack (qualifying lap) throttle is shown in blue, whereas the lift-and-coast is colored in orange. The track Circuit de
Catalunya, located in Spain, is used for this example.

1.8. Defining and exploring variables 17

Fastest-lap, Release v0.5

We have three plots: throttle (check how the orange curve systematically backs off to zero some meters before the
blue!), brake, and saved energy. All three are represented against the meters traveled by the car. The track map should
help to relate distance and the corners in the track.

Overall, the driver loses +0.411s. This means, that to save fuel for an entire extra lap, the driver will lose +4.110s.

. . . continue reading in medium

1.10 Car and tire dynamics at the limits of handling (Part I)

Formula 1 cars can swift through corners at more than 5g, and after twenty years watching the sport, still fascinates me.
Really. And it gets even more mind-boggling once you realise that this acceleration is entirely produced by the grip of
tires. To push the tires into their operating window and extract their maximum performance is key in Formula 1. All
the dynamics, the power of the engine, the energy of the brakes, ultimately is imprinted to the asphalt by the tires. So
we need to talk about tires!

In this blog, you will read about how tires generate grip, about what parameters dictate the grip levels, how this grip
can be modelled mathematically, how it is effectively controlled by the drivers, and how it affects the car dynamics.
This blog is the first part out of two, which covers straight line acceleration and braking. Cornering and lateral forces
will be covered in Part II.

There are many articles on internet about tire modelling, but what makes this one powerful, is that through simulations
you will see them in action fitted in cars, which gives you a broader insight on how they really work.

. . . continue reading in medium

18 Chapter 1. Overview

https://medium.com/@fastestlap/how-racing-drivers-save-fuel-efficiently-the-lift-and-coast-technique-b8dce8b8b12a
https://medium.com/formula1-tech-magazine/car-and-tire-dynamics-at-the-limits-of-handling-part-i-95725924452

Fastest-lap, Release v0.5

1.11 Car and tire dynamics at the limits of handling (Part II)

Right. Part II, here. we. go.

This blog is the continuation of Car and tire dynamics at the limits of handling (Part I), where we laid the foundation
of tire grip generation and its relation to car acceleration in straight line. As surprising as it sounds, cars normally also
need to take corners, which is the raison d’être for this second blog in the series.

Knowledge of how tires behave at the limits of handling is fundamental to grasp advanced concepts such as understeer
and oversteer. Usually, these are presented as ‘when the car does not want to turn’ or ‘when the car turns more than
what the driver commands to’. Do you want to level up from these definitions and master the underlying science? then
my friend, you will enjoy the rest of this blog.

First and foremost, you need to understand that cornering also needs acceleration. Acceleration is the rate of change
in the velocity, and when a car corners, it changes its velocity, precisely, its direction. In particular, cars need lateral
acceleration to corner, and it is no surprise, that this acceleration is again produced by the grip of the tires.

. . . continue reading in medium

1.12 Can 2022 F1 cars tame 130R with DRS open? — Suzuka tech
bits

Formula 1 arrived at Suzuka, Japan. Its 5.8km length circuit comprises all corner types from slow ones like the Hairpin
to thrilling high speed turns like the 130R. And about 130R, one of the talking points prior to the grand prix was whether
the new cars could take 130R flat out with the DRS open. Mainly because due to the more stable rear part of the 2022
cars, the influence of the DRS in switching the balance frontward is more mitigated than in previous years.

In this blog, we look at the possibility of taking 130R with the DRS open with the new regulation F1 cars, and we will
do so by using laptime simulation [4].

To start, we find a setup of the car that fits real telemetry data. For this example, Fernando Alonso’s best qualifying lap
in the 2022 event was selected.

With this simulation, we take a deeper look into the stress on the tires. In the diagram below, we see that the rear part
of the car is more loaded than the front (the vertical ‘energy’ bars at the right of each tire), being the right tires the one
putting the effort in this left handed corner.

ince the rear part of the car is more loaded, the front tires need more slippage to turn, hence, the car understeers into
the corner. We see that the car can take this corner flat out without any issues since the tires are approximately at their
50% of the maximum grip. The velocity at which the cars hit the apex is 303km/h.

Now, we open the DRS in the backstraight. . .

. . . continue reading in medium

1.11. Car and tire dynamics at the limits of handling (Part II) 19

https://medium.com/formula1-tech-magazine/car-and-tire-dynamics-at-the-limits-of-handling-part-ii-cc0934eb79c9
https://medium.com/formula1-tech-magazine/can-2022-f1-cars-tame-130r-with-drs-open-suzuka-tech-bits-7a37305cdc0

Fastest-lap, Release v0.5

1.13 Formula 1 cars or sailing ships?– United States GP Tech bits

During the 2022 United States Formula 1 Grand Prix, the presence of heavy gusts of wind was one of the talking points
(besides the superhuman race from Alonso!), altering the balance of the cars and even causing Valtteri Bottas to lose
control of his car.

Wind gusts are specially dangerous since they concentrate on a specific location, and their strength doubles or triples
the mean wind in the region. In the case of Austin, the average wind was 20km/h, but drivers could encounter sudden
gusts of 50km/h in a particular section of the circuit.

Having seen this, I run a poll in Twitter after the race. The question what simple: there’s a 50km/h wind gust at Turn
11. In what direction would it be more favorable for a driver? After more than 2000 votes, head-wind in the braking
point was the clear winner (south-west direction).

Is it really the best direction performance-wise? Well, the answer will surprise you. . . unless you got it right :D

. . . continue reading in medium

20 Chapter 1. Overview

https://medium.com/formula1-tech-magazine/formula-1-cars-or-sailing-ships-united-states-gp-tech-bits-4474d45ee945

	Overview
	Installation
	Windows 10 (Precompiled binaries)
	Linux and Mac
	Troubleshooting

	Quickstart
	Overview
	Variable types
	Functions
	Configuration
	set_print_level

	Factories
	create_scalar
	create_vector
	create_vehicle_from_xml
	create_vehicle_empty
	create_track_from_xml
	copy_variable
	move_variable

	Destructors
	delete_variable

	Modifiers
	vehicle_set_parameter
	vehicle_declare_new_constant_parameter
	vehicle_declare_new_variable_parameter

	Getters

	Models
	F1 3 degrees of freedom model
	Go-kart 6 degrees of freedom model

	Modules
	Circuit preprocessor
	GG-diagram
	Optimal laptime

	Defining and exploring variables
	How racing drivers save fuel efficiently: the lift-and-coast technique
	Car and tire dynamics at the limits of handling (Part I)
	Car and tire dynamics at the limits of handling (Part II)
	Can 2022 F1 cars tame 130R with DRS open? — Suzuka tech bits
	Formula 1 cars or sailing ships?– United States GP Tech bits

